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One of the basic problems of the density-functional theory/spin polarized local-density approximation
�DFT /LSDA�+U theory is the efficient evaluation of the U term. In the present work, we propose an alter-
native approach for its calculation which is based on the knowledge of the Hartree-Fock �HF� wave functions
of the system under consideration. As a result, the proposed approach is closer to the basic definition of the
DFT /LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a
consistent and ab initio way using the self-consistently calculated wave functions of the given system at the
level of the HF approximation. Our method is applicable for systems which include more than one type of
elements with localized d orbitals. Application of the method in the case of the doped Zn�Co�O system is
presented.
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I. INTRODUCTION

As part of the first attempts to go beyond the spin polar-
ized local-density approximation �LSDA� or the spin polar-
ized generalized density gradient approximation �SGGA�, of
the density-functional theory �DFT�, the following correction
�Ecor��ni�� to the DFT/LSDA �or the DFT/SGGA� functional
was considered for systems including d electrons,1–4

�Ecor��ni�� = − Edd
LSDA�nd� + EHF��ni�� , �1�

where Edd
LSDA�nd� is the electron-electron interaction for the

localized d states in the LSDA, which depends only on the
total number of localized electrons nd=�ini with ni being the
orbital occupancies of the localized states, and EHF��ni�� is
the Hartree-Fock �HF� expression for the d-d �localized elec-
trons� interaction. Thus, by the definition dictated by Eq. �1�,
the corrected DFT/LSDA is one type of a hybrid DFT with
its differentiation from the latter originating from the expres-
sion of EHF��ni�� which is defined in terms of renormalized
orbital dependent Coulomb, Uij, and exchange, Jij, param-
eters taking the form

EHF��ni�� =
1

2�
i�j

�Uij − Jij�ninj . �2�

This model is known as the DFT /LSDA+U model �al-
though it is mostly implemented within the DFT/SGGA
rather than within the DFT/LSDA�. Therefore, it can be
claimed that, by its definition, this model belongs in one way
or the other to the general class of the hybrid-DFT theories
which rely on the accurate results of the HF theory. It should
be noted, however, that other approximations to �Ecor��ni��
may also be used. These depend on the choice of the func-
tional upon which the U correction is made and, conse-

quently, on the physics underlying such an approximation.
For example, Cococcioni and de Gironcoli5 adopt the U pa-
rameter as the �unphysical� curvature of the total-energy
curve as a function of the occupation numbers. Interestingly,
their correction to the LDA total energy, in fact, amounts to
the incorporation of the Hubbard U term. For this type of
functional the LDA/GGA type of wave functions are more
appropriate.

The realization of the DFT /LSDA+U model depends
strongly on the accurate determination of the Uij and Jij pa-
rameters which in turn depend on the Slater integrals Fk in
terms of which they are calculated.1,3 Solovyev et al.2 used
LSDA-based results to obtain Uij and Jij for the 3d elements
arguing that the single electron wave functions derived
within the LSDA/SGGA seem to improve the overestimation
which is introduced in the calculation of F2, F4, and F6 in-
tegrals when these are obtained using atomic functions.

The matrix elements Uij and Jij of the Coulomb and ex-
change interactions can be obtained by differentiating
�second-order derivative� the LSDA energy with respect to
the variation in the electron-density matrix and to the varia-
tion in the magnetization, respectively.2,3 These differentia-
tions lead to expressions for Uij and Jij, respectively, in terms
of �effective� Slater integrals Fk and integrals over products
of three spherical harmonics.1,3 Such estimations of Uij and
Jij are based on the assumption that the LSDA energy is a
continuous function of both the electron density and the
magnetization. That is, they are based on the well-tested su-
percell LSDA approach according to which the matrix ele-
ments of the electron density have to be constrained locally
and the second-order derivative of the LSDA energy with
respect to these elements yields the wanted interactions.3,6

On the other hand, averaging Uij and Uij −Jij over all
possible ij pairs one finds for the average U and J values:
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U=F0 and J= �F2+F4� /14.1 This is a very useful result be-
cause one can make use of the existing tables for F2 and F4

for the 3d elements and have numerical values for J �J
= �1.625 /14�F2 as obtained by exploiting the fact that
F4 /F2�0.625�.1–3 This is the most commonly used approach
in practical applications of the DFT /LSDA+U method, i.e.,
obtaining U and J values by using tabulated data of the Fk

integrals. This procedure has been applied with success in
systems containing single species having localized �d� elec-
trons. For such systems one can employ the averaging of Uij
and Uij −Jij and obtain one pair of �U ,J� values that will be
assigned to the element with the d electrons. However, in
many practical applications as, for example, in the case of
doped transition-metal oxides, e.g., the Co-doped ZnO �to be
denoted as Zn�Co�O�, more than one elements with localized
electrons coexist, rendering the above averaging scheme in-
applicable. One, thus, has to employ the second-order �nu-
merical� differentiations for getting the �U ,J� values for each
element with localized electrons.

The variety of the proposed implementations of the
DFT /LSDA+U method,1–5,7 despite guaranteeing the self-
consistent incorporation of the U and J terms, has not lead to
any substantial improvement in the energy gap of the metal
oxides if applied only on the d electrons. This has led to
semiempirical applications of the DFT /LSDA+U method in
which the �U ,J� values are treated as parameters which are
obtained empirically by fitting to experimental data.8 As a
result, the DFT /LSDA+U approach when applied in this
manner looses its ab initio character and therefore its predic-
tive power.

In the present work, we propose an alternative approach
which is based on the knowledge of the HF wave functions
of the system which, as a result, is closer to the basic defi-
nition of the DFT /LSDA+U scheme which aims to correct
the DFT/LSDA functional so as to be able to recover the
correct HF features �as expressed in Eq. �1��. According to
our approach the �U ,J� values are obtained in a consistent
and ab initio way using self-consistently calculated wave
functions of the given system at the level of the analytic HF
approximation �as stated in Eq. �1��. In terms of these HF
wave functions, we first calculate the U and J values and
then incorporate them �as constant parameters� into one of
the existing DFT /LSDA+U schemes. The present approach
can also be used for s and p electrons as well to generate U
and J corrections for them which appear necessary in im-
proving the gap deficiency of the DFT/LSDA theory.8

II. PROPOSED NEW APPROACH

Both DFT /LDA+U or the DFT /SGGA+U can be put on
a firm ab initio footing provided that the determination of the
parameters U and J has been achieved in an ab initio way.
Toward this end, a direct and efficient parametrization of the
HF solution is greatly desirable in order to obtain the exact U
and J parameters. This is attempted in the following.

In particular, it is assumed that we can run a HF code for
a system of interest, obtain the HF energy, EHF, �i.e., its
Coulomb, EHF,Cb, and the exchange energy, EHF,X, contribu-
tions and the orbital occupation numbers, n�

HF� and can iso-

late the contribution EHF
loc to the HF energy which is due to

the localized orbitals �or more generally to a set of orbitals�.
Having this EHF

loc, and its Coulomb and exchange contribu-
tions �EHF,Cb

loc and EHF,X
loc , respectively� the parameters U and J

can then be extracted using the following equations:

EHF,Cb
loc = �

���

U��n�
HFn�

HF �3�

and

EHF,X
loc = �

���

J��n�
HFn�

HF. �4�

In the spirit of the DFT /GGA+U,2,5 one needs to apply
Eqs. �3� and �4� for the localized orbitals of the system.
However, a question remains as to whether this can also be
applied for the nonlocalized orbitals by choosing an integra-
tion radius around the atom of interest in an appropriate way.

A. Implementation of the present method

We start with the expression of the Hartree-Fock energy
assuming atomic orbitals �AOs� �i of the form

�i = �i�ri� = �i��i,�i�Rni	i
�ri� = Ylimi

��i,�i�Rni	i
�ri� �5�

with i representing the set of the quantum numbers �nilimi	i�
�main, orbital, magnetic, and spin quantum numbers, respec-
tively�:

EHF = �
i,j�i

ni
HFnj

HF�EHF,Cb
ij + EHF,X

ij � , �6�

where EHF,Cb
ij and EHF,X

ij are Coulomb and exchange contri-
butions to EHF, respectively. The Coulomb term

EHF,Cb
ij = 	�i� j


1


ri − rj


� j�i� �7�

takes the explicit form �suppressing the spin index�,

EHF,Cb
ij = �

L,M

4
�ij
�0�

2L + 1
� r�

L

r�
L+1RiRjRjRiri

2drirj
2drj , �8�

where �ij
�0� is the output of the integration of the angular

terms expressed in terms of a combination of 3j symbols

�ij
�0� =� �i

��i�LM��i,�i�d
i� � j� j
��LM

� �� j,� j�d
 j

�9�

with

� �i1
� �i2

�i3
��i,�i�d
 = �
l1 l2 l3

0 0 0
�
 l1 l2 l3

m1 m2 m3
� ,

�10�

where

� =��2l1 + 1��2l2 + 1��2l3 + 1�
4


�11�

and the terms in brackets denote Wigner’s 3j symbols.
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A similar expression is derived in a straightforward way
for the exchange contribution EHF,X

ij to EHF,

EHF,X
ij = 	�i� j


1


ri − rj


�i� j� . �12�

Our computational approach for evaluating EHF,Cb
ij and

EHF,X
ij makes use of an approach which is commonly used in

quantum chemistry calculations. That is, we express the ra-
dial functions Ri in terms of Gaussian-type orbitals �GTOs�,
�q�r�, i.e.,

Ri�ri� = Ci�
q

�iq�ri� , �13�

where Ci are coefficients obtained from the Hartree-Fock
solution as detailed in the following. It is recalled that the
wave functions Ri�ri� of the HF solution include components
corresponding to s, p, d, and f orbitals �and correspondingly,
GTOs�.

As we are interested in the Hartree-Fock energy of the
localized orbitals, we locate the components of the HF wave
functions which correspond to contributions from these or-
bitals only �e.g., the d orbitals� extracting thus, the set of the
�i orbitals which we will use in the evaluation of EHF,Cb

loc and
EHF,X

loc using the formalism and the expressions for EHF,Cb
ij and

EHF,X
ij given in the above.

Note that the energy, EHF
loc, is calculated by taking the lo-

calized electrons to be isolated, i.e., not being in the field of
the other electrons of the system. If we want to take into
account the interaction of the localized electrons with the rest
of the system, then we should repeat the calculation taking in
this case the rest of the electrons as the isolated part. From
the total EHF

loc and its two terms �EHF
loc,1 for the localized elec-

trons and one for the remaining ones, EHF
loc,2� we can get the

EHF
�,loc for the localized electrons in the field of the rest of the

system. Having obtained EHF,Cb
loc and EHF,X

loc , the estimation of
U and J can be obtained by fitting the results as given by
Eqs. �3� and �4�.

B. Example applications: Computational details

We next apply the above described computational scheme
in the case of the bulk ZnO approximated by a ZnNON cluster
exhibiting the wurtzite structure. For the first set of calcula-
tions we consider the case N=22. Our objective for this sys-
tem is to calculate the U and J values for the Zn�3d� orbitals
and compare them with other reported results. Thus, the lo-
calized orbitals are the Zn�3d� ones and, consequently, we
restrict the set of the quantum numbers �nilimi	i� to the �ni
=3, li=2,mi	i� one.

The symmetry of the system dictates that we choose a set
of six basis functions of d character, namely, the set
�dxy ,dyz ,dxz ,dxx ,dyy ,dzz�. Each of these basis functions is
given as a superposition of three GTOs �iq�r� of d character
with each GTO being localized on each of the Zn ions and
specified by its exponent �iq and its coefficient diq having the
form

�iq�r� = diqr2 exp−�iqr2
. �14�

Both the coefficients diq and the exponents �iq are obtained
from reported tables. In the present example we used the
results of Ref. 9. Thus, each one of the six basis d functions
has the form of Eq. �13�. The molecular orbitals �MOs� of
the system are a linear superposition of these basis functions
taken over the whole system. That is, each MO will consist
of 6N d components, where N is the number of the d ions of
the cluster or the supercell of the system. We obtain the 6N
Ci d coefficients, which specify the MOs according to Eq.
�13�, from the HF solution.

It should be understood that in order to get the correct HF
solution of the system we include basis functions for the s
and p �and sometimes the f� orbitals as well. As a result, the
HF wave functions �MOs� have more than just the 6N d
components. However, it is the 6N components of d charac-
ter that are used in the calculation of U and J.

In the case of the Co-doped ZnO �to be denoted as Zn-
�Co�O�, U and J values should be found for both Zn�3d� and
Co�3d� orbitals keeping in mind that these may not be the
same for the two materials. In this case one may use for Co
the same set of GTOs as used for Zn or specify one set of
GTOs for Zn and another one for Co. In either case Zn and
Co should be described by the same type of basis functions
�s ; px ; py ; pz ;dxy ,dyz ,dxz ,dxx ,dyy ,dzz�.

For the case of the ZnO, we obtained the HF solution of a
ZnO cluster consisting of 44 atoms �22 Zn and 22 O atoms�
using the GTOs of Ref. 9. We then located those MOs with
pronounced d character. That is, those which have significant
contribution from the AOs �i.e., basis functions� of d type.
From each of the so selected MOs we obtain one set of six
coefficients Ci �see Eq. �13�� for the six d orbitals. It is as-
sumed that such a set specifies the localized d orbitals of Zn
and use this set to calculate the U and J values according to
the procedure described in Sec. II A. This procedure is re-
peated for all the selected MOs exhibiting d character before
finally averaging the U and J values obtained.

Subsequently, the proposed procedure is applied in larger
ZnO clusters, namely, the Zn40O40 and Zn59O59 clusters, as
well as in the case of the Co-doped ZnO approximated by
two clusters, namely, the Zn21CoO22 and the Zn20Co2O22
ones.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the 44-atom ZnO cluster, exhibiting the
wurzite structure, used in our calculations. The lattice sites
are numbered and this enumeration is used in Table I in order
to indicate the positions of the Zn atoms whose d functions
were used in the calculation of the U and J values shown in
this table.

The results shown in Table I have been obtained using a
selected partial set of the cluster MOs which exhibit a sig-
nificantly pronounced d character �greater than 70%�. Aver-
age U and J values of this set of MOs over the Zn atoms of
the cluster are shown in Table II. As can be seen in Table I,
there is a rather large spread in the obtained U and J values
over the Zn atoms. This seems to suggest a strong depen-
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dence of the U’s and J’s on the cluster site while appearing to
have a negligible dependence on the MO eigenvalue �shown
also in Table I�. This observation indicates a dependence of
both U and J on the group symmetry of the cluster site which
in turn specifies the hybridization associated with this site
AOs, their occupancies and their degrees of freedom.

In order to further verify this, we have examined the char-
acter of the d MOs which correspond to high �U ,J� values
and that of the MOs which correspond to low �U ,J� values.
Surprisingly, we find that MOs with t2g dominant character
�i.e., with contributions from XY, XZ, and YZ type orbitals�
correspond to low �U ,J� values, while MOs with eg domi-
nant character �e.g., XX, YY, and ZZ type orbitals� corre-
spond to high �U ,J� values. This relationship has been
checked in a predictive way very successfully.

These conclusions were further verified by extending our
methodology to larger ZnO clusters by considering 80- and
118-atom clusters. Results corresponding to partially selected
sets of MOs of these clusters are included in the supplemen-
tary information.10 These results provide further confirmation
of the conclusions we arrived at by analyzing the results of
the 44-atom cluster. This lends strong credence to the predic-
tive character of our conclusion establishing a relationship
between the character of the d MO and the �U ,J� values
associated with it. This in turn naturally leads to the question
about the relationship between the point symmetry of the
cluster site and the �U ,J� values and, therefore, of the site

dependence of the �U ,J� values. The necessity of introducing
such a site dependence of U has been shown in studies of
bulk phases as well, as demonstrated in the case of Fe3O4 for
which different U values were assigned for Fe2+ and Fe3+

ions �sites�.11 However, our results do not show a clear rela-
tionship between the character of the d orbital and the point
symmetry of a lattice site.

In Table II we present the average values of the param-
eters �U ,J� as obtained by averaging over all occupied MOs
which exhibit a d character of more than 25%. The number
of MOs used for each cluster is also indicated in Table II. It
is apparent from this table that there is a rather good conver-
gence of the average values with the cluster size. However, it
is quite noticeable that the average values are an isobaric
balance of small and large �U ,J� values indicating an iso-
baric distribution of t2g and eg MOs. As shown in this table,
if the averaging process is taken over those MOs which ex-
hibit d contribution greater than 50%, the obtained average
values are found to be larger. A further increase in the aver-
age �U ,J� values is obtained if the d contribution of the MOs
is taken to be more than 70%. These results indicate that the
level of hybridization of the d states appears to be a crucial
factor in specifying the �U ,J� values thus making it very

TABLE I. Calculated values of U, J, and U−J for the ZnO44
cluster according to the proposed computational procedure. The site
position shown in column 2 is indicated in Fig. 1. In the first col-
umn we indicate the eigenvalue of the corresponding MO relative to
the HOMO level.

MO energy
�eV� Site No.

U−J
�eV�

U
�eV�

J
�eV�

−25.287 Zn�39� 1.515 1.848 0.334

−25.219 Zn�39� 3.006 3.671 0.665

−24.922 Zn�41� 2.891 3.388 0.497

−23.130 Zn�8� 4.363 5.263 0.900

−22.358 Zn�16� 1.707 2.068 0.361

−22.067 Zn�28� 4.361 5.218 0.857

−21.845 Zn�42� 4.461 5.228 0.767

−20.104 Zn�20� 2.812 3.372 0.560

−19.975 Zn�20� 3.399 4.091 0.691

−17.392 Zn�36� 2.832 3.515 0.682

−17.051 Zn�32� 5.504 6.528 1.024

FIG. 1. �Color online� The 44-atom ZnO cluster used in the
calculations. Zn atoms are shown in yellow �gray�. The numbering
of sites corresponds to that referred to in Table I.

TABLE II. Average values of the U, J, and U−J values over the Zn atoms of the indicated clusters
considered in the present investigation. In the fifth column we insert the total number of the cluster MOs
exhibiting d contribution greater than that indicated in the last column. The averages were taken over these
sets of MOs.

Cluster
	U−J�
�eV�

	U�
�eV�

	J�
�eV� No. of MOs

MO’s d contribution
�%�

44-ZnO 1.525 1.722 0.197 111 25

80-ZnO 1.926 1.717 0.209 198 25

118-ZnO 1.593 1.788 0.195 263 25

118-ZnO 1.805 2.014 0.209 97 50

118-ZnO 3.003 3.308 0.305 7 70
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clear, as stated in Sec. I, the very crucial nature of the choice
of the wave functions used in the estimation of the �U ,J�
values.

It is also worth noting that the d states obtained from the
HF calculation are much deeper �relative to the energy of the
highest occupied MO �HOMO�� than the corresponding
DFT/LDA findings12 or the experimentally observed location
of the peak of the density of states �DOS� of the Zn�3d�
states with the latter located at �7–8 eV below the valence-
band maximum.13–15

The values of U and J obtained from the wave functions
exhibiting eg character are in rather good agreement with the
reported values for ZnO. In fact, the representative U and J
values for transition metals reported in the literature are U
=4.5 eV and J=0.5 eV.16 X-ray absorption and emission
spectra as well as GW calculations for ZnO are found to be
recovered within the DFT /LSDA+U using U=6.0 eV for
Zn leading to a Zn�3d� DOS peak at about −7.0 eV below
the valence-band maximum,14 in close agreement with the
experimental value of −7.4 eV.15 Anisimov et al.7 using
table data of the Slater integrals estimate the U and J values
in the range �6.8–8.0� eV and �0.78–0.98� eV, respectively.
Finally, we find that, in order to fit the experimentally ob-
served peak of the Zn�3d� DOS with that obtained within the
DFT /SGGA+U method for the Zn�Co�O system, the U val-
ues for Zn�3d� and Co�3d� electrons have to be 6.5 eV and
3.5 eV, respectively. However, these values should be con-
siderably modified if a U value for the O ions is simulta-
neously incorporated.8 It is worth noting, however, that a
comparison of the U values obtained with different compu-
tational schemes is meaningful only if these U corrections
are applied to the same DFT functional.

Applying the same procedure to the Zn21CoO22 cluster we
find that the presence of the Co atom in the cluster site 24 �to
be denoted as Co�24�� leads to a 4% and 3% decrease in the
partial average �corresponding to the selected set of MOs
used in Table I� of U and J values, respectively, over the Zn

atoms. On the other hand, in the case of the Zn20Co2O22
cluster �with the two Co atoms located at sites 12 and 43� we
find an increase of 4.5% and 6% for the partial average U
and J values, respectively �with respect to the undoped clus-
ter�.

In the Zn21CoO22 cluster, the U and J values for Co were
found to be very small, namely, 0.736 eV and 0.210 eV,
respectively. In the Zn20Co2O22 cluster, the corresponding U
and J values for the two Co atoms were found to be: 5.276
eV and 0.660 eV for Co�12� and 0.878 eV and 0.250 eV for
the tetrahedrally bonded Co�43� atom. It should be noted
however, that for the Co-doped clusters we did not find MOs
with pronounced d character. The contribution of the Co d
orbitals to the MOs of the corresponding clusters is approxi-
mately 40% indicating a strong delocalization as a result of
their hybridization. Furthermore, and in agreement with
DFT/SGGA calculations �see, for example, Ref. 8 and refer-
ences therein�, the eigenvalues of the Co�d� dominated MOs
are much closer to the HOMO level than that of the Zn�3d�
dominated ones.

In conclusion, we have presented a computational scheme
for estimating the parametrization of the DFT /SGGA+U
method. Our approach is in consistency with the whole con-
cept �definition� of the SGGA+U correction and is based on
the ab initio HF theory. Our method was applied to bulk ZnO
and the Co-doped ZnO systems both approximated by small
clusters. The obtained results indicated a strong dependence
of the obtained U and J values on the symmetry of the clus-
ter site. However, on the average, the obtained U and J val-
ues are in good agreement with the results obtained by other
methods.
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